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The Jauch-Piron property of states on a quantum logic is seen to be of 
considerable importance within the foundation of quantum theories. In this 
survey we summarize and comment on recent results on the Jauch-Piron 
property. We also pose a few open problems whose solution may help in further 
developing quantum theories and noncommutative measure theory: 

P R E R E Q U I S I T E S  

Defini t ion I. A quan tum logic is a triple (L, <-, '), where L is a set that  
is partially ordered by <- and that  fulfills the following requirements: 

(i) L possesses a least and a greatest element, 0, 1. 
(ii) I f  a, b ~L  and a -< b, then b '  -< a ' .  

(iii) The unary  operat ion ': L ~ L  satisfies the following condition: 
( a ' ) '  = a for any a s L .  

(iv) I f  a, b ~L  and if a <- b' ,  then the supremum a v b exists in L. 
(v) I f  a, b ~ L  and a -< b, then b = a v (b A a ' )  (the o r thomodu la r  

law). 

Thus,  technically speaking, a quan tum logic is a formal generalization 
o f  the not ion o f  a Boolean algebra (the lattice condit ion is dropped and the 
distributivity law is relaxed to the o r thomodu la r  law). When  a quan tum 
logic is viewed as an event structure o f  a quan tum experiment, the lattice 
condit ion on L does not seem to be justified and the distributivity law does 
seem to be super f luous- - i t s  presence could actually bring us outside 
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quantum physics. From the mathematical standpoint, too, it seems 
unduly restrictive to allow lattices only (we would, e.g., lose the logic 
of projections in a C*-algebra, the logic of skew projections in a 
Hilbert space, the logic of splitting subspaces in a (noncomplete) inner 
product space, many interesting set-representable logics, etc.). In this paper, 
we shall not require logics to be lat t ices-- in fact, sometimes we do not 
want them to be. Let us denote by L a (quantum) logic throughout this 
paper. 

Definition 2. (see, e.g., Ptfik and Pulmannovfi, 1991). A mapping 
s: L --* (0, 1) is called a state on L if it fulfills the following two conditions: 

(i)  s ( 1 )  = 1. 
(ii) If  a < b', then s(a v b) = s(a) + s(b). 

Further, a state s: L---,(0, 1) is called Jauch-Pi ron  (abbreviated 
a JP state) if the following condition holds true: If s(a) = s(b) = 1 for 
a, b e L ,  then there is an element c ~ L  such that c -< a, c <- b, and s(c) = 1. 
If every state on L is Jauch-Piron,  we call L a Jauch-Piron  Logic (a JP 
logic). 

Unlike the "ordinary" distributive ( =  Boolean) case, a logic may not 
possess any state at all (Greechie, 1971), o r - -p rov ided  it does - -none  (or 
most) of them may not be Jauch-Pi ron  (see, e.g., Navara and Rogalewicz, 
1991). Note that the Jauch-Pi ron  condition may be thought of in the 
stochastic fash ion--we insist that the pairs of "almost sure" events in a 
given state admit a subordinated "almost sure" event. Technically, the 
presence of the Jauch-Pi ron  property may often move us nearer the 
"classical" ( =  Boolean) mathematical areas. 

As regards examples of JP logics, such are Boolean algebras (we put 
c = a A b) and the lattices L(Cn) of all projections in an n-dimensional 
Hilbert space (n > 3). The former statement is obvious and the latter 
derives as a direct consequence of the famous Gleason theorem (Gleason, 
1957). Typically, a logic possesses both JP and non-JP states. 

Example. Put ~ = (0, 1)2 and take for L the collection of all subsets 
of f~ whose Lebesgue measure is rational. Thus, L = {A c ~I/~(A) is a 
rational number}. Then L is a (non-Boolean) quantum logic (we under- 
stand L endowed with the inclusion partial ordering and with the set-theo- 
retic orthocomplementation operation (A '  = f~ -- A). We claim that L is not 
a JP logic. Indeed, take a measurable subset of ~, some B, with #(B) > 0, 
and define a state s: L ~ ( 0 ,  1) by putting s ( A ) = s ( A  c~B)/s(B) ( A ~ L ) .  
Then s is Jauch-Pi ron  if and only if #(B) is a rational number. 

Let us now examine miscellaneous aspects of Jauch-Pironness.  
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1. "DISCRETE"  J A U C H - P I R O N  LOGICS 

Let us start with finite logics. Even in this class we have the "Greechie 
phenomenon" to be aware o f - - t he r e  are finite logics without any 
state at all (Greechie, 1971). Obviously, a stateless logic is also J auch -  
Piron by our definition, but we are naturally more interested in logics 
whose states spaces are reasonably rich. Let us call a logic L unital 
(Gudder, 1979) if the following condition is fulfilled: If  a e L  and if a r 0, 
then there is a state s on L such that s(a) = 1. We now have the following 
result. 

Theorem 1.1. (Rfittimann, 1977). Let L be a finite unital Jauch-Pi ron  
logic. Then L is Boolean. 

This result (resp. the appeal of  the way in which it was proved) 
considerably contributed to the increase of the interest in JP logics. 
Rfittimann (1977) seems also to be responsible for the name of this class of  
logics. 

The effort to generalize Theorem 1.1 for "simple" infinite logics 
resulted in the following two theorems. 

Theorem 1.2. (Rogalewicz, 1991). Let L be a unital Jauch-Pi ron  logic. 
Let L contain only finitely many maximal Boolean subalgebras. Then L is 
Boolean. 

Theorem 1.3. (Ovchinnikov, 1991). There is a unital countable Jauch-  
Piron logic that is not Boolean. Moreover, the latter logic can be required 
a sublogic of the projection logic L(C3). 

To complete the schema here, it seems desirable to know if one can 
construct Greechie logics fulfilling the properties of Theorem 1.3. (Let us 
call a logic Greechie if it is atomic and every two maximal Boolean 
subalgebras in it meet in at most one atom.) We do not know the answer 
to this question. 

In the conclusion of this section, let us note that recently the following 
strengthening of  the JP condition has appeared (de Lucia and Pt/tk, 1992; 
Majernik and Pulmannov/t, 1992; Pt/Lk and Pulmannovfi, n.d.). Let us say 
that a state s on L is strongly Jauch-P i ron  if for any couple a, b ~ L  there 
is an element c e L  such that c > a, c > b, and s(c) < s(a) + s(b). Obviously, 
if s is strongly Jauch-Piron,  then it is Jauch-Piron.  The "vice versa" 
statement does not hold: Every lattice logic that is unital with respect to 
strongly Jauch-Pi ron  states has to be Boolean (Ptfik and Pulmannovfi, 
n.d.). 
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2. THE J A U C H - P I R O N  PROPERTY IN CONCRETE LOGICS 

A logic is called concrete if it can be represented by a collection of 
subsets of a set. In other words, L is concrete' if L c exp S, where exp S is 
the collection of all subsets of a set S, and if the following conditions are 
satisfied: 

(i) ~ L .  
(ii) If A ~L(A ~ $), then S - A eL. 

(iii) If A, B~L(A,  B ~ S) and if A c~B = ~ ,  then A w B ~ L .  

Thus, the concrete logics are in a sense "nearly Boolean." [It should be 
noted that such (or very similar) structures appeared already in the classics 
of the descriptive theory of sets and mathematical analysis many years ago 
(see, e.g., Kuratowski, 1966).] The conceptual value of concrete logics for 
quantum axiomatics seems first to be pointed out by Gudder  (1969, 1979). 

When does a concrete Jauch-Pi ron  logic have to be Boolean? The 
next result (one of the first results in this line) says that it is so quite often 
and that it is always "nearly" so. 

Theorem 2.1 (Navara and Pt~,k, 1989). Let L be a concrete Jauch-  
Piron logic. Then the following statements hold true: 

(i) If L is a lattice, then L is Boolean. 
(ii) If L lives on an at most countable set [i.e., if L = (S, Ls), where f~ 

is at most countable], then L is Boolean. 
(iii) If L ~ exp S for a set S and if A, BeL(A ,  B c S), then there is a 

finite collection {C1, C 2 , . . . ,  Cn} c exp S such that CieL for any i 
( i < n )  and A ~ B =  Ui_<nCi. 

Let us pause for a moment at the condition (iii) to acquire better 
insight into the kind of the problems that are pursued here. The proof  
of the condition (iii) goes approximately as follows: If A'c~ B va ~ ,  then 
there is a state s on L such that s(A) = s(B) = 1. Thus, the set b~ = {t is 
a state on LIt(A)----t(B)--1} is nonvoid. Moreover, 5eA.B is compact 
in the pointwise topology. For any C ~ L  with C c A  c~B, put 
5Pc = {teSeA,81s(C)> 0}. Since L is Jauch-Piron,  we have 5eA,B = 0 ~C, 
where C varies over all sets CEL such that C c A c~B. Since every 5ec is 
open in 5CA.B, we let the compactness of 5cA, B work for us to arrive at a 
finite family Ci (i < n) with 5~A.B = Ui-<, 5~ Obviously, Ui <_, C~ = A n B. 

Let us come back to the question which was asked prior to the latter 
theorem. This question appeared to be fairly nontrivial. However: 

Theorem 2.2 (Miiller, 1993). There is a concrete Jauch-P i ron  logic 
that is not Boolean. 
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In fact, the technique utilized in the latter result guarantees a proper 
class of Jauch-Piron logics that are not Boolean. The following question 
then announces itself immediately. Can every concrete logic be embedded 
(in a compatibility-preserving manner) into a concrete Jauch-Piron logic? 
The answer to this question seems to be unknown for the time being. 

Remark. Bunce et al. (1985) succeeded in solving the a-complete 
version of the question posed above. They solved it in the affirmative, 
needing, however, the set-theoretic assumption TRM of the nonexistence of 
real-measurable cardinals (can this set-theoretic assumption be omitted?). 

3. JAUCH-PIRONNESS IN PROJECTION LOGICS 

The study of the JP condition in the logics of projections in yon 
Neumann algebras started with Amann (1987) and was further deepened in 
Bunce and Hamhalter (n.d.) and Hamhalter (1993). Since a more detailed 
exposition of these results is contained in the present vo!ume, let us only 
state here two results which are directly related to the contents of this 
survey. 

Theorem 3.1 (Hamhalter, 1993). Let d be a yon Neumann algebra. 
Then the logic N(d )  of all projections of d is Jauch-Piron if and only if 

is a direct sum of a commutative von Neumann algebra and a finite- 
dimensional yon Neumann algebra. 

In the projection logics, an interesting line of investigation presents 
also the "individual" Jauch Piron condition. For instance, the following 
elegant result is in force [the result may have a direct interpretation in 
quantum foundations (see e.g., Bugajski et aL, n.d.; Emch, 1972). 

Theorem 3.2 (Bunce and Hamhalter, n.d.). Let d be avon  Neumann 
algebra which does not contain a central Abelian part. Let s be a pure state 
on ~(s~r Then s is Jauch-Piron if and only if s is e-additive. 

4. A LINK OF JAUCH-PIRON PROPERTY WITH TOPOLOGICAL 
REPRESENTATIONS OF LOGICS 

In an analogy with Boolean algebras, a natural project is to look for 
set or topological representations of logics. Obviously, the standard Stone 
representation technique cannot be adopted here--the set of two-valued 
states on a logic may be very poor (see, e.g., Greechie, 1971). Several 
attempts have been made to obtain at least some weaker representations of 
logics (or orthomodular lattices); see, e.g., Binder and Ptfik (1990), Itturioz 
(1986), Pt~k (1983), and Tkadlec (1991, 1993). An interesting topological 
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representat ion was found in Tkadlec (1991) and, to a certain surprise, the 
J a u c h - P i r o n  condit ion appears again [see Tkadlec (1993) for a precise 
definition o f  all notions;  see also Tkadlec (1991) for relevant comments  and 
open problems]. 

Theorem 4.1 (Tkadlec,  1993). Let L be a logic. Then there is a 
zero-dimensional  closure space (S, - )  such that  L can be order-or thoem- 
bedded in the o r thomodu la r  lattice o f  clopen subsets o f  S. Moreover ,  S can 
be taken a topological  space if and only if L possesses a unital set o f  weakly 
additive J a u c h - P i r o n  states. 

5. CAN T H E  J A U C H - P I R O N  C O N D I T I O N  H E L P  IN 
E X T E N D I N G  ST AT E S?  

Let us call L state universal if the following implication holds true: 
Whenever  L is embedded in K, where K is a unital logic, every state on L 
can be extended over K. We do not  know whether  every J a u c h - P i r o n  logic 
is state universal [ though  in the "mos t  na tura l"  cases to be tested it is so 
(Hamhal ter ,  n.d.; Ptfik, 1985). It  should be observed that, on the other  
hand, there are state universal logics which are not  J a u c h - P i r o n  [such as, 
e.g., L ( H )  for  dim H = ~ ;  see Theorems 3.1 and 3.2]. 
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